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Use the form (53) and assume t^a1-jra2. I t is always 
easy to integrate over one component of k, say k2, by 
use of the formula, 

1 r r cosnki (%—(x2—\)ll2)n 

- / dk2 = . (Dl) 
Wo 00— C0S&2 (#2—-1)1/2 

Those of the resulting integrals which are not trivial 
may be transformed by the substitutions, 

k\=T—26 , 

2ai 2ai (D2) 
0 ^ W 2 2 = S ^ = W l 2 ^ 1 , 

INTRODUCTION 

MAGNETO-OPTICAL phenomena involving 
changes in the state of polarization of a wave, 

such as the Faraday or the Voigt effects, have recently 
received much attention as experimental tools for in
vestigating transport properties of semiconductors. In 
this article, we analyze the magnetic-field dependence of 
the total absorption associated with the above phe
nomena, in the attempt to see what further information 
can be obtained by measuring transmitted amplitude as 
a function of the field. I t will be shown that the effect 
provides a means of investigating the magnetic-field 

* Initial work supported by the Advanced Research Projects 
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into expressions of the type, 

2 /•*'* (sintf)2" 
- / dd — , 
T J o [ (1 - ft!2 sin20) (1 - n2

2 sin20)]1/2 

v integral, (D3) 

times certain factors involving the ah These integrals 
in turn yield to the elliptic substitution,27 

(\-n2
2) sin20 

sn2^= , (D4) 
1 — n2

2 sin20 
giving the results (64). 

27 P. F. Byrd and M. D. Friedman, Ref. 12, Eqs. 284, 336, and 
337. 

dependence of the diagonal component of the con
ductivity tensor, and represents in fact a modified high-
frequency version of magnetoresistance. The changes in 
the amplitude of the transmitted wave can be quite 
pronounced in the free-carrier region and, in general, 
involve simple measuring techniques. I t is thus worth
while to consider the effect as a useful high-frequency 
method for the study of galvanomagnetic properties. 

We will first outline a plane-wave semiclassical analy
sis of the case when an initially linearly polarized wave 
travels along the direction of an applied magnetic field. 
This situation gives rise to the Faraday effect, and will 
be referred to as the Faraday configuration. We will 
then consider the case of propagation transverse to the 
applied field, i.e., the Voigt configuration. Results of 
some microwave and infrared experiments carried out 
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in these configurations will finally be compared with 
the theoretical analysis. 

THEORY 

A. The Faraday Configuration 

1. General Formulation 

The attenuation constant ff of a nonmagnetic medium 
can be expressed in terms of the effective complex 
dielectric constant eeff=e'+ie" as 

P=<*&oyf*W2+e"2)m-*'l 1/2 (1) 

where MO is the permeability of free space, co the fre
quency, and e' and e" are real. The mks system is used 
throughout this paper. In analyzing the Faraday con
figuration, one considers the incident linearly polarized 
wave in terms of its contrarotating circularly polarized 
components, each of which is characterized by a differ
ent €eff and 0. I t is convenient to formulate the problem 
in terms of the high-frequency conductivity tensor. For 
isotropic materials in a magnetic field, 

0*11 0*12 0 

"" 0"i2 (Tn 0 

0 0 C733J 
(2) 

where the coordinate system is defined by taking the 
direction of magnetic field as axis 3. The diagonal com
ponent can be written o"n = <7ii(0) — Ao-, where Aa con
tains the magnetic-field dependence, and o-n(O) is the 
high-frequency conductivity at zero field. 

The real and imaginary parts of the effective dielectric 
constant for the two senses of polarization can now be 
written1 

€ ±
, = €./+[((71i , ,d=<r„ ,)/«], (3) 

(4) 

Here ut is the dielectric constant of the material with
out the free-carrier contribution, and the single and 
double prime denote real and imaginary parts. The 
upper and lower signs refer, respectively, to the right-
and left-handed circular polarization. 

The major axis of the elliptically polarized wave 
transmitted at field B is given as the sum of the ampli
tudes of the two components E(B)~E0(e~~P+z+e~P-z) 
where 2Eo is the incident amplitude and z the thickness 
of the specimen. In the absence of the magnetic field, 
the transmitted amplitude is given by E(Q) = 2Eoe~P°% 
Po being the zero-field attenuation constant. I t then 
follows that 

E(B) exp(-iM)+exp(--/9Ls) 

E(0) 2 exp(—/30s) 

. =expB(2&~- / ?+ -£ -X] . (5) 
1 B. Lax and L. M. Roth, Phys. Rev. 98, 549 (1955). See also 

B. Lax and J. G. Mavroides, in Solid State Physics, edited by F. 
Seitz and D. Turnbull (Academic Press Inc., New York, 1960), 
Vol. 11, p. 261. 

Equation (5) is obtained by neglecting second-order 
terms in $(P+—pj)z, which, in general, is a very good 
approximation. 

2. Small Losses 

The case of small loss tangent, e"/e'<Kl, will be dis
cussed for three regions: r""1^^, coc; CO^T""1 , CO; and 
a££>coc, T™1, where r _ 1 and coc are the scattering and the 
cyclotron frequencies, respectively. A convenient general 
expression can be obtained for the three regions, 

In-
E(B) 

lE(0)~ 

1/2 A<r' 
Ao-'=|8oz 

<m'(0) 
(6) 

Equation (6) was derived under the condition 
cop

2/(coQ)<Kl, where ft designates r - 1 , «, or coc, whichever 
of these is the largest in the given region. Here cop is the 
classical plasma frequency [we2/(m*es/)]1/2, where n is 
the carrier density and m* the effective mass. The above 
condition guarantees that the loss tangent is small and 
that e± ' is positive.2 

In order to study the behavior of Eq. (6), it is in
structive to express Ac' in terms of the one-electron 
model, assuming isotropic effective mass w* and iso
tropic relaxation time in the form T=T0€

P, where e is the 
carrier energy relative to the band edge.3 Then 

ne2 / r(l+coc
2r2-3co2T2)co0

2r2 \ 
Aer' = — < — Y (7) 

w*\( l+co 2r 2)[( l+a) c
2T 2+co 2r 2) 2-4a; 2co cV]/ 

For a Maxwell-Boltzmann distribution, 

<g(x))* 
4 f 

— \ S(x)x' 
6\/TT Jo 

V2e-Xdx, 

where x—e/kT. 
Equation (7) can be readily reduced to any range of 

signal, collision, and cyclotron frequencies. Thus, when 
the collision frequency is high (r-1^>co, r ^ W c , typical 
of microwave experiments at room temperature), 

E(B) /fjio\ll2ne2 

In = * * ( — ) —O>C*(TZ), 
\est/ m* 22(0) 

1/2 ( r 3 ) 

(rwHVdB2 , 

= &&HHlliBi 
( r 8 ) 

<T»><T> ! 
(8) 

2 In the present article we do not discuss explicitly the narrow 
range where 0 > e ± " / € ± ' > (—• 1). In this region of extreme attenua
tion experiments involving transmission are impractical. More
over, if the inequality holds for one sense of polarization, but not 
the other (helicon waves), Eq. (5) does not apply. 

8 Components of the conductivity tensor in terms of this 
model are given explicitly in, e.g., J. K. Furdyna and M. E. 
Brodwin, Phys. Rev. 124, 740 (1961). 
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where JJLH and yd are the Hall and drift mobilities 
e(r2)/(w*(r)) and e(r)/w*, respectively, and o-0 is the 
dc conductivity ne2(r)/m,*. 

In the high-magnetic-field region (coĉ >co, GI^T"1), the 
expression is given by 

E(B) / / x o \ 1 / 2 ^ 2 1 / l / « f l V \ \ 
In = * * ( — ) ( - ( 1 ) > , (9) 

E(0) \ € . / / i»* W e A A l + c o V • / / 

which approaches ^(Mo/es/)
1/Vn /(0) = /5ô , illustrating 

the disappearance of free-carrier absorption in the high-
field limit. 

In the range a£>>7-1, a£$>coc, characteristic of infrared 
or low-temperature microwave experiments, the ampli
tude ratio is given by 

E{B) / / x o \ 1 / 2 ^ 2 c o c
2 / l \ <oc

2 

E(0) W / w* c o A r / w2 

At cyclotron resonance (o;=coc^>r~1), Eq. (7) reduces to 
the well-known dependence 

ln-
E(B) 

lE(0)~ 

reflections at interfaces. This is justified for the low-loss 
region where reflections are determined primarily by 
es/. However, in the present case, reflections are mostly 
due to the sample conductivity, and hence will manifest 
a significant dependence on the magnetic field. The 
effect of taking reflections into account amounts to 
replacing z with z+8 in Eqs. (12) and (13), where 8 is 
the skin depth.4 

The region of high frequencies or high fields is not 
discussed in this section. The value of the loss tangent 
is itself a function of the parameters cor and COCT [as 
can be seen from Eqs. (3) and (4)], and in general 
decreases as these quantities are increased. Hence, in 
the limit cor̂ >>l or cocr^>l the situation will generally 
belong to the range of small losses, described by the 
equations in the previous section. 

4. Connection with the Faraday Rotation 

I t is possible to correlate the amplitude ratio with the 
simultaneously occurring Faraday rotation 0.3,5 For 
low-loss materials, as well as lossy samples with z^>8, 

Mo 

esi 

1/2 ne* 
:(r) 1 E(B) Aa' 

6 E(0) cr12' ' 
(14) 

/Mo\ 1 / 2 Ay1 

= — \z\ — ] (70== — h^oz^2(T)\~) • (11) I n terms of the simple model, this reduces to 
^€st 

Note that Eqs. (10) and (11) indicate a decrease of 
amplitude with increasing magnetic field, in contrast 
with Eqs. (8) and (9). Note further, that the amplitude 
ratio depends essentially on (r3) in the case of short 
collision times, on (r_ 1) in the limit of high frequency 
or field, and on (r) in the particular instance of cyclotron 
resonance. In intermediate ranges of r_1, co and coc, the 
amplitude behavior is more complicated, but can be 
obtained by an appropriate expansion of Eq. (7). 

3. High Losses 

The range of very high values of the loss tangent 
e"/ef will be considered for the case when the collision 
frequency exceeds both the cyclotron frequency and the 
frequency of the wave, r_1^>>coc, r"1^^. In this range, 
the high-loss approximation of the amplitude ratio can 
be written in terms of the a tensor as 

ACT' 

0"12 

c(r) 
(r3) 

(r2)(r)= 
ZfJid B-

<r3> 

Ac' / T \ ( 

< 7 1 2 ' \1+WV/ 

for r-^ooc, 

o-n'(O) 

and 

(TO 

for oic^>r~l, 

r - ^ c o ; (14a) 

coc»co; (14b) 

A</ 

0"12 co A T / 
for co^r™1 , aO>>coc. (14c) 

In-
E(B) 

lE(0)' 
— 2ZI 

.2<rii'(0)J 

^ A*' 
A<r'=| /V 

<TU'(0) 
(12) 

For the frequency range considered here, the one-carrier 
model then yields 

E{B) <r3> <r3> 
In =§2;(!cojuo<ro) 1 7 W =iPoZa)c

2 

E(0) <T> (r) 

This correlation can be used to eliminate several 
parameters from the measurement, viz. the carrier con
centration, the lattice dielectric constant, and the thick
ness. The elimination of the thickness z is of interest, 
since this, in turn, greatly reduces the error due to 
multiple internal reflections, standing waves, and certain 
geometric irregularities. I t is, further, possible to apply 
Eq. (14) to measurements on powders, where the active 
optical path length is unknown. 

Similar correlations are possible with other quantities, 
such as Faraday ellipticity, total absorption, or phase 
shift. 

(13) 

Thus far, the derivation has neglected the problem of 

4 To include the effect of reflections, we have followed the 
magneto-Kerr-effect formulation of R. J. Vernon, M. S. thesis, 
Northwestern University, 1961 (unpublished). 

5 J. K. Furdyna and S. Broersma, Phys. Rev. 120, 1995 (1960). 
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5. Anisotropy of the Effective Mass 

For an arbitrary orientation of magnetic field in 
crystals characterized by anisotropic constant energy 
surfaces, <m generally differs from cr22 by terms quad
ratic in B. Hence our analysis, which involves these 
terms and which assumes crn = o-22, does not hold 
rigorously. In this case a more elaborate treatment, 
resolving the incident field pattern into appropriate 
elliptically polarized components, is necessary even for 
the low-field limit. The procedure recently developed 
by Donovan and Webster6 for the Faraday effect may 
be extended to the present problem. 

However, when B is applied along certain crystallo-
graphic directions of high symmetry (e.g. the [111] or 
[100] axes in ^-type silicon and germanium), an be
comes equal to o-22, and Eqs. (6) and (12) are valid. 
Now, however, the forms of an are different for each 
orientation of B? Effective-mass anisotropy can thus be 
obtained from the amplitude variation. 

Using ^-type silicon as an example it can be shown, 
upon substituting the high-frequency conductivity 
tensor in Eq. (6), that for magnetic field in the [100] 
direction, coc

2/m* in Eq. (8) must be replaced by the 
form 

wc
2 e2B2(mi2Jrm1m2~\-fn22) 

> y ( 1 5 a ) 
m* 3wi2w2

3 

whereas for the field along the [111] direction, coc
2/m* 

must be written 

ccc2 e2B2(mi+2m2)(2mi+m2) 
_> $ ( 1 5 b ) 

m* 9wi2m2
3 

where m\ and w2 are the longitudinal and transverse 
components of the effective mass tensor, respectively. 
Note that Eq. (15b) substituted in Eq. (8) will yield an 
expression in terms of <r0, \XH and \x& identical in form to 
the isotropic case, where now MH=(mi+2w2)e(r2)/ 
[ (2^1+7^2)^2(7-) ] and J U ^ = ( 2 W I + W 2 ) ^ ( T ) / ( 3 W I W 2 ) . 

Equations for other ranges of co and coc can be similarly 
derived by introducing the components of the con
ductivity tensor appropriate to the given orientation 
in Eq. (6). 

6. Degenerate Bands and Minority Carriers 

In the presence of more than one type of carrier, 
Eq. (7) must be generalized to the form 

A<r'=£-

X 

? w 

( : 
r^l+cOcfVj2—3w2T<2)a)ci

2r,-2 

C.% M J ' 

(16) 
V(l+ W

2 r , 2 ) [ ( l+o ; c ,W+co 2 r , 2 ) 2 " -4co 2 co 

where i refers to the carrier type. 
6 B . Donovan and J. Webster, Proc. Phys. Soc. (London) 79, 

46 and 1081 (1962\ 
7 To obtain the high-frequency conductivity tensor for a given 

orientation of magnetic field, see, e.g., B. Lax, H. J. Zeiger, and 
R. N. Dexter, Physica 20, 818 (1954). 

Since the amplitude ratio depends on the diagonal 
component of the conductivity tensor, the effects of 
electrons and holes are additive, in contrast to the 
Faraday rotation or ellipticity. This must be taken into 
account in working with intrinsic and near-intrinsic 
materials, particularly if the minority carrier mobility 
is large. 

In the case of band degeneracy, the effect of light 
holes on the amplitude ratio is exceedingly important 
at low field. This can be easily demonstrated for the 
low-field and low-frequency limit, in which Eq. (16) 
becomes 

the* n± m^ 

W2 \ ni nil* 

n^e2 

m2 

v> [<n (17) 

where subscripts 1 and 2 refer to the heavy and light 
holes, respectively. Here scattering times and scattering 
mechanisms for the two types are assumed the same, 
and in the last form of the expression ni/n2 is assumed 
to be given by the density-of-states ratio (m\lmi)m. I t 
is thus clear that, if the two masses are considerably 
different (as, e.g., in ^-type germanium), the effect is 
determined almost entirely by the light hole. 

Another interesting property of Eq. (16) is the 
saturation of the light-hole contribution in the region 
where coc2r is no longer small, but cocir<<Cl still holds. 
Then 

the1 

Aa'= coC2' 
tri2 L M+coC2' L \ l + c o c 2

2 r 2 / \tnj J 

I t is easily seen that the initial dropping off of the 
amplitude ratio from quadratic B dependence is even 
less sensitive to the heavy hole. 

Expressions for other ranges can be similarly obtained 
by reducing Eq. (16). The behavior is in general closely 
analogous to magnetoresistance in degenerate bands. I t 
must be emphasized, however, that in the present case 
the quantity measured lends itself to theoretical analysis 
much more readily. For instance, in the low-field and 
low-frequency limit, the amplitude ratio depends on the 
single (T3) magnetoconductivity term, contrasted with 
the inseparable combination ((r3)—d{r2)2/{r)) en
countered in dc magnetoresistance, where the quantity 
a represents the fact that the relative contribution from 
the two bands is different to each of the averages. 

B. The Voigt Configuration 

Experiments involving propagation transverse to the 
magnetic field are of great interest in the presence of 
anisotropy, since in this configuration one can vary 
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the relative orientation of magnetic field, crystal axis, 
and polarization of the incident electric vector in a 
single experiment. The analysis is carried out by con
sidering separately the polarization of the E vector 
perpendicular and parallel to the magnetic field. The 
attenuation coefficient 13 for the two cases is again ob
tained via Eq. (1) from the effective dielectric constant 
eeff=€ /+ie / /. For the perpendicular polarization eeff is 
given by1 

if o*i22 \ i 
€(eff)l= €8t ( CiH J = Ut CTj. , (19) 

C O N 0"22 + ^ 6 g / / CO 

where a ^ ^ ( ^ 2 / w * e s / ) 1 / 2 is the classical plasma fre
quency. In order to retain the plasma terms, which are 
prominent in this configuration even in the low-loss 
region, the constant r model is used, since the energy-
dependent treatment yields a rather cumbersome and 
unrevealing expression. I t is interesting to note that 
Eq. (22) displays two extrema when frequency rather 
than magnetic field is varied. When the plasma fre
quency is very small, Eq. (21) for the perpendicular 
polarization reduces to Eq. (6). 

In the region of high losses corresponding to that 
defined in Sec. 3 the amplitude ratio becomes, for 
samples thicker than the skin depth, 

E(B) /wo<ro\1/2 / (T*)(T) coest\ 
In = - W ) ^BHl-— ) . ( 2 3 ) 

£(0) \ 2 / \ <T2)2 (To / 

This differs from the expression for the Faraday con
figuration by the presence of the first and third terms 
in the bracket. The difference is analogous to that be
tween dc magnetoresistance associated with the shorted 
and the open-circuit Hall fields, the latter case corre
sponding, of course, to the Voigt configuration. I t should 
be pointed out that it is necessary to use the energy-
dependent r derivation, since in the constant r approxi
mation the major term of Eq. (23) disappears entirely. 

The amplitude variation for the E vector parallel to 
the magnetic field gives a measure of longitudinal mag-
netoconductivity. In this case the expressions describing 
low- and high-loss situation will be given, respectively, 
by Eq. (6) and (12), with A</ defined as cn/CO)-eras' (B). 
Except in isotropic cases 0*33 (B) is, of course, generally 
not equal to o"n(0). 
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and for the parallel polarization by 

i 
€ ( e f f ) H = € g / — — Or33 , \ 2 0 ) 

CO 

where the propagation is always along direction 2, mag
netic field along direction 3, and the o-# are, of course, 
complex. The amplitude ratio for either polarization 
is then 

ln( ) =D8(20x,n-A>>. (21) 

For transverse polarization in the region of low losses, 
Eq. (21) becomes 

EXPERIMENTAL RESULTS AND DISCUSSION 

A. The Faraday Configuration 

We have studied experimentally the behavior of the 
amplitude ratio in the case of longitudinal propagation 
at 35 Gc/sec at room temperature, i.e., in the region 
r " 1 ^ ; , coc, in silicon and germanium. All samples satisfy 
the condition under which Eq. (6) is valid, namely, 
€///e/^cop

2/(o;r"1)<<c:l. The apparatus designed for 
measuring the Faraday rotation5 was adapted to study 
the effect. The instrument consists essentially of a 
cylindrical waveguide propagating the T E n mode, 
which passes through an axial hole in the magnet pole-
pieces and is terminated with an analyzer head capable 
of rotating about the direction of propagation. The 
sample, in the form of a disk, is placed at a waveguide 
discontinuity in the center of the field. Since the polari
zation ellipse rotates as a function of the magnetic field, 
the analyzer can be rotated to the position of maximum 
signal at each value of the field to obtain the amplitude. 
Every measurement is repeated for the reverse field 
direction, and the average taken, to cancel the error 
arising from possible zero-field ellipticity. 

Faraday rotation can be measured simultaneously. A 
mode correction must be applied to obtain the corre
sponding plane wave rotation 6 appearing in our equa
tions.8 For the T E n mode propagating with small losses 
and far from cutoff this amounts to multiplying the 
observed guided rotation by the factor 1.18. 

8H. Suhl and L. R. Walker, Phys. Rev. 86, 122 (1952). 

E(B) 
a = 

E(0) *© 
K5 

Re[>u(0)-ffJ 

v 1/2 W g2 coc
2T3(l+ccc

2r;!-3co2i-2+2co3)
2r2) 

e„7 m* ( l+w 2 T 2 ) [ ( l+ W c V-a> 2 T 2 +cVr 2 ) 2 +«V(2- -w/ /co 2 ) 2 ] ' 
(22) 
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FIG. 1. The circles represent room temperature measurements 
of the amplitude ratio versus magnetic field for a typical n-type 
silicon sample, 5 mm thick. The straight line of slope 2 is drawn 
to illustrate the quadratic nature of the effect at lower fields. 
Note the small but systematic departure of experimental points 
from the B2 dependence in the upper limit of the plot due to 
fourth order B terms, which gradually become important as fxB 
is increased. The highest point corresponds to /J?—0.2. 

1. n-Type Silicon 

Typical data for n-type silicon as a function of mag
netic field are shown in Fig. 1. As discussed in Sec. 5 
above, the amplitude ratio in this material depends 
directly on the relative orientation of the field and the 
crystal. At this point it is convenient to define the 
quantity 

Vhki -
E(B)T <r«> 

In 6B 
. £(0)JL r- (24) 

where hkl refer to the direction of the magnetic field 
relative to the crystal axes. 

Using the results of Sec. 5 and the expression for 6 in 

TABLE I. Comparison of theoretical and experimental values 
for oriented n-type silicon crystals. Thickness of the specimens is 
1 cm for samples 1-5, 0.5 cm for sample 6. 

Sample 

1 

2 

3 

4 

5 

6 

p 
(O-cm) 

51 

46 

41 

40 

24 

18 

hkl 

100 

111 

100 

111 

100 

111 

Vhkl 

(m2/V-sec) 

0.167 

0.135 

0.170 

0.138 

0.153 

0.126 

Mioo/Mm 
expt. theor. 

1.24 

1.23 1.214 

1.21 

9 In the range considered here, 

0 = i*W««i')1 /Wff£ = izQ*o/est)ll2ne*B{r*) • (m1-\-2m2) / (3mim2
2). 

terms of m\ and m>2,9 we have, for ^-type silicon, 

e(r) e(r)/ 1 2 
Min= ( 1 

3 W i m% / wr 
and 

3(mi2+^iW2+W22) 
/XlOO — Vd . 

( w i + 2m2) (2wi+W2) 

(25a) 

(25b) 

The experimental results are summarized in Table I. 
Isotropic lattice scattering, which yields (r3) /((r2)(r)) 
= 1.50, was assumed in calculating the tabulated values 
of IJL. Electron drift mobility for lightly doped silicon is 
known to be about 0.135 m2/V-sec,10 which gives satis
factory agreement with our results. The theoretical 
value of MIOO/MIH, obtained by using mi/m2=5.16,u 

also compares favorably with our results. 

2. Magnetodichroism 

As pointed out in Sec. 5, for B applied along crystal 
directions other than [100] and [111] in ^-type silicon, 
crii7z£o"22 and the above equations do not hold. In addi
tion to its dependence on the direction of the magnetic 
field, the transmitted amplitude will now also depend 

TABLE II. Comparison of experimental results and theoretical 
estimates for n-type silicon crystal with B along the [110], and 
£(0) along the [001] and [110] directions. Sample resistivity is 
3812-cm, thickness 1 cm. Theoretical values are obtained with 
Eq. (26). 

Polari
zation jUllO*2"" 

qpr (m2/V-sec) 
/*iio9?,r/Woo 

expt. theor. 
Miio ! l %iio 0 0 1 

expt. theor. 

001 

110 

0.165 

0.123 

1.01 

0.75 

1.00 

0.74 
0.75 0.74 

on the orientation of the incident electric vector relative 
to the crystal axes, thus exhibiting a form of dichroism 
induced by the magnetic field. 

We measured the amplitude ratio at low fields in 
?2-type silicon, with B along the [110] axis. Faraday 
rotation, which does not depend on the directions of 
B and E in the low-field limit, was also measured. We 
define iihkiqvr in analogy with Eq. (24), with the sub
script denoting, as before, the orientation of the mag
netic field, and the superscript referring to the direction 
of polarization of the incident electric field. The results 
are given in Table I I . 

The theoretical values in Table I I are estimated in 
the following manner. We calculate the conductivity 
tensor for /z-type silicon in the coordinate system where 
axes x. y* and z correspond to direction [001], [110], 

10 E. M. Conwell, Proc. I.R.E. 46, 1281 (1958). 
11 G. Dresselhaus, A. I. Kip, and C. Kittel, Phys. Rev. 98, 368 

(1955). 
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and [110], respectively. We then assume that, to 
calculate ln[£(£)/£(0)] i 1 0

0 0 1 and ln[E(3)/E(0)]no l 1 0 

may use Eq. (6) with [_<JII($) — <JXX\B)~] and we 
[yu'CO)—ov/C^Ol respectively, substituted for A</. 
The argument appears especially plausible for small 
rotations. The relation thus obtained is 

Miioi10 Wi2+4mim2+w2
2 MHO110 

Mno001 2(mi2+m1m2+m2
2) JUIOO 

(26) 

The agreement between the theoretical values ob
tained in this manner and the measurement is rather 
interesting. I t should be pointed out that, unlike the 
more symmetric situations considered in this-paper, in 
this orientation of B the ratio mi/m2 can thus be meas
ured simply by rotating the sample about its axis. I t 
would be very desirable to analyze this case rigorously 
using the approach of Donovan and Webster.6 

3. p-Type Germanium and Silicon 

Figure 2 shows the results obtained on ^-type ger
manium as a function of the field. Note the rather pro
nounced departure of the effect from quadratic B de
pendence at fields beyond about 3 kG. This departure 
is also present in the ln[E(5)/.E(O)]/(0£) curve, be-

0.03 

m i o 
UJIUJ 

0.003 

0.001 
0.3 1.0 
B(Webers/m2)~ 

FIG. 3. Room-temperature measurements of the amplitude ratio 
versus magnetic field for a ^-type silicon sample 5 mm thick are 
shown by solid circles. The straight line of slope 2 represents the 
low-field extrapolation. In contrast with ^>-type germanium, the 
effect barely begins to saturate in the upper limit of available 
magnetic fields due to the low mobilities involved. The highest 
experimental point corresponds to iia%B^ 0.35. The open circles 
represent the amplitude ratios normalized by the simultaneously 
measured Faraday rotations. The flat portion of the solid curve, 
obtained from the low-field extrapolation, was used to estimate the 
value of fjLd2 in the text. 
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FIG. 2. Room-temperature measurements of the amplitude ratio 
versus magnetic field for a ^-type germanium sample 3 mm thick 
are shown by solid circles. The straight line of slope 2 represents 
the low-field extrapolation and illustrates the pronounced de
parture of the data from the B2 dependence beyond ca. 3 kG due 
to the saturation of the light-hole contribution. The highest 
point corresponds to ^ 2 ^ — 2.3. The open circles represent the 
amplitude ratios normalized by the simultaneously measured 
Faraday rotations. The flat portion of the solid curve, obtained 
from the low-field extrapolation of the data, is determined almost 
entirely by the light holes. This low-field value of the curve was 
used to estimate naz in the text. 

cause the relative contribution of the saturating light-
hole term to the amplitude ratio is greater by a factor 
m\/m2 than the corresponding contribution to rotation. 

I t can be shown that at low fields, 

r E(B)-vr (r3) - p 1 e{r)r /m2\
1/2 mf\ 

In SB = 1-1 — ) + — > (27) 
L £(0)JL (T2)(T)J mX \mj mj 
where the assumption n2/n\~ (m2/mi)sl2 is made. Apply
ing Eq. (27) to our measurement, we obtain, for 
lattice scattering and mi/m2=S,n the light-hole-drift 
mobility JU<*2= (e(r)/w2) = 1.33 m2/V-sec. Assuming that 
Md2=Mdi(wi/w2), and using the value of the heavy-hole 
mobility known from dc measurements, \xa\—0.190 
m2/V-sec,10 we obtain jurf2= 1.52 m2/V-sec, in fair agree
ment with our measurement. 

Experimental results obtained on ^-type silicon are 
shown in Fig. 3. The amplitude ratio, and its rate of 
dropping off as a function of the field, are considerably 
smaller than the corresponding effects in germanium, 
due to the relatively small value of m\/m2 in silicon. 
The value of iidi obtained from the low-field results via 
Eq. (27) is 0.25 m2/V-sec. The value of ixa2 estimated 
from published data (/zdi=0.048 m2/V-sec,10 m\/m2 

= 3.06n) is 0.15 m2/V-sec. The discrepancy shows the 
necessity of a more detailed treatment of ^>-type silicon 
than that presented here. I t is seen on inspection that 
the limitations imposed by the assumption Ti=T2, 
n\/n2— (mi/m2Y

12 are considerably more serious when 
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mi/m2 is not very large. The warping of the heavy-hole 
band, not considered in this paper, will then also affect 
the result, because of the relative importance of the 
heavy-hole term in Eq. (27). Furthermore, it can be 
shown that the assumption T I = T 2 , used both in the 
interpretation of the present results and in deriving 
/zd2 from published data, is itself valid to a lesser degree 
in silicon than in germanium.12 Finally, at room tem
perature the contribution from the split-off V3 band is 
also considerably greater than in the case of germanium, 
and should be considered. 

B. The Voigt Configuration 

In order to compare the theory for this configuration 
with experiment, we will apply the results of Sec. B to the 
published far infrared experiments of Palik et al. on 
GaAs.13 Their experiment was carried out in the Voigt 
configuration, with the electric vector orthogonal to 
the magnetic field. The situation is described by Eq. 
(22), which predicts the main features of the behavior 
observed by these authors. 

Referring to Fig. 1 of Ref. 13, we note that the follow
ing properties of Eq. (22) are illustrated: (1) E(B)>E(0) 
in the high-field limit. I t should be emphasized that 
this follows directly from Eq. (22), and is not a result of 
an interference effect, as has been previously supposed.13 

(2) E(B)<E(0) in the low-field limit, under the condi
tion w>r~1 , co>cop. (3) E(B) = E(0) when a>c

2«3a>2 

— 2cop
2. The effect of the plasma term is clearly illus

trated in the quoted figure, where op(A)>up(B) 
>oop(C), A, B, and C referring to the three samples 
studied. This property, which may be exploited to 
estimate cov, should be useful in eliminating the error 
from the corresponding shift in the cyclotron resonance 
condition OJC

2=W2—COP
2. 

SUMMARY AND CONCLUSION 

The theoretical analysis of the magnetic-field de
pendence of free-carrier absorption has shown that this 
effect can provide useful information about transport 
properties of semiconductors, in particular about the 
scattering mechanism, effective mass anisotropy, and 
degenerate band parameters. The simplicity of equa
tions involved indicates that, even in the region where 

12 See, for example, Harvey Brooks, Advances in Electronics and 
Electron Physics (Academic Press Inc., New York, 1955), Vol. 7, 
p. 152. 

13 E. D. Palik, J. R. Stevenson and R. F. Wallis, Phys. Rev. 
124, 701 (1961). 

the dependence on transport parameters is essentially 
similar to that of dc magnetoresistance, magnetoabsorp-
tion measurements can yield this information more 
directly. This property should be especially useful in 
studying complicated systems, e.g., degenerate bands. 
A practical feature of considerable importance is that 
these measurement can be performed without the use of 
electric contacts. 

The experiments have demonstrated that the effect is 
sufficiently large to be easily measured even by relatively 
unsophisticated methods, and that the results are in 
agreement with the values of transport parameters 
published by other workers. A simple bridge technique 
can be expected to increase the precision substantially. 

We have discussed in some detail the relation between 
transmission changes and the associated rotation of the 
plane of polarization occurring in the Faraday con
figuration, because this simplified the interpretation of 
our experimental data. The disadvantage of this relation 
is that, in the case of rotation of guided waves, it is 
necessary to apply a mode correction before using the 
plane wave-expressions. I t may be more advantageous 
to correlate the effect with the total zero-field absorption 
instead. This correlation is shown by the equations for 
the amplitude ratio where ft) appears explicitly. The 
essential aim of either procedure is to eliminate several 
unknowns from the measurement, e.g., the dielectric 
constant and the optical thickness. Application of the 
high-frequency methods to materials in powder form 
may thus be possible. 

I t should finally be briefly mentioned that the 
imaginary counterpart of magnetoabsorption, i.e., the 
magnetic-field dependence of the total phase shift, 
manifests similar behavior and can be analyzed in 
complete analogy with the present development, using 
«=co(|Aio)1/2[(e /2+e / /2)1/2+e /]1/2 in place of 0. I t can be 
easily shown that the effect, which essentially involves 
quadratic B terms of eef/? may be quite large when COT is 
not negligible, and will exhibit a particularly strong de
pendence on the scattering mechanism through the high 
powers of r appearing inside the average. Measurement 
of the total phase shift as a function of the field, in 
conjunction with the absorption measurement, would 
thus be of considerable interest. 
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